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SUMMARY

This paper formulates a finite volume analogue of a finite element schematization of three-dimensional
shallow water equations. The resulting finite volume schematization, when applied to the continuity
equation, exactly reproduces the set of matrix equations that is obtained by the application of the
corresponding finite element schematization to the continuity equation. The procedure allows the consistent
and mass conserving coupling of the finite element Telemac model for three-dimensional flow with the
finite volume Delft3D-WAQ model for water quality. The work has been carried out as part of a joint
development by LNHE and WL|Delft Hydraulics to explore the mutual interaction of their software.
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1. INTRODUCTION

The finite element method has distinct advantages for the modelling of surface water flow. The
flexibility of irregular grids, often composed of triangles, and the accuracy that can be obtained
by the different shapes of base functions gives the modeller flexibility. The finite volume method
is often the method of choice for water quality modelling because of its natural representation of
the law of conservation of mass. The purpose of this joint study is to examine whether it would
be feasible to use finite element methods for the modelling of water flow and to use finite volume
methods for the modelling of water quality on the thus computed water flow. The method presented
here builds on the joint representation of the same set of matrix equations for the representation
of the continuity equation to ensure a consistent and mass conserving migration of the flow field

∗Correspondence to: Leo Postma, WL|Delft Hydraulics, P.O. Box 177, 2600 MH Delft, Netherlands.
†E-mail: leo.postma@wldelft.nl

Copyright q 2006 John Wiley & Sons, Ltd.



1496 L. POSTMA AND J.-M. HERVOUET

from the hydrodynamic model towards the water quality model. The resulting procedure is simple
and easy to implement. A first rudimentary application of this technique took place for Venice
Lagoon [1]. Presently a more complete coupling is obtained and the numerical backgrounds are the
subject of this contribution. In Section 2 the water levels and velocities as computed with the FE
hydrodynamic model are converted into a set of volumes and flows for the FV water quality model
that is mass conserving up to machine accuracy. Furthermore, it is shown that this approach works
for all hydrodynamic models that solve the continuity equation with the classical finite element
method with nodal polynomial base and test functions that need not be equal. In Section 3 the
results of a testcase are presented.

2. MASS AND ADVECTION MATRIX IN FEM

The advection–diffusion equation (1) is the transport equation for the concentration C of substances
in the water, subject to the diffusion tensor D and the advection vector u:

�C
�t

=∇ · (D × ∇C) − ∇ · (uC) (1)

This equation is supplemented with Dirac-� functions for point loads and continuous functions
for diffuse sources of the substances. Mutual reaction terms between the different substances in
the water will complete the equation to a full water quality model [2]. Here we will limit ourselves
to the advection part:

∫ tn+1

tn

(
�C
�t

+ ∇ · (uC)

)
dt = 0 (2)

To maintain consistency, Equation (2) should hold also for water (with concentration 1.0 always
and everywhere). This leads in three dimensions to ∇u = 0 and to �h/�t =−∇hu for the depth-
integrated version of (2). This is the continuity equation of incompressible hydrodynamic flows. The
representation of this continuity equation in finite element models results from the multiplication
of the equation with sufficiently smooth test functions �i [3]. The finite element form of the
depth-integrated continuity equation then becomes (3) [4]. This form has 2 parts: (a) the part of
the change in water level or change in mass and (b) the part of the advection or flow:

∫ tn+1

tn

(∫
�

(
�h
�t

+ ∇ · (hu)

)
�i d�

)
dt = 0 ∀i (3)

Test functions are either derived per element E and per node as nodal polynomial base or only
per element as hierarchical polynomial base [3]. We will limit ourselves to nodal bases. A test
function corresponding to node i is 1.0 in i and 0.0 in the other nodes. The polynomial base of
element E is expanded to the complete model domain � through composition of shape functions
around the nodes i from the element base. In this way a set of equations, one per node, results [5].
For node i it contains the addition of all element contributions of the elements sharing node i . The
velocity vector u generally comes from the hydrodynamic parts of the set of equations. It may be
indirectly influenced by the concentration C (e.g. if C influences water density like for salt, heat
and silt). We will elaborate more on both parts of the continuity equation in next sections.
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2.1. The mass matrix in the continuity equation

We assume that depth h is approximated with base functions that equal the test functions according
to (4), but application of this Galerkin technique [6] will not be critical for the conclusions. The
part of the time derivative of h in (3) then transforms into (5) for an element containing nodes i ,
j and k. ME is the mass matrix of element E :

h̃ = ∑
i
hi�i (4)

�
�t

∑
i

∑
j

∫
�
hi�i� j d�= �

�t
ME

⎛
⎜⎜⎜⎝
hi

...

hk

⎞
⎟⎟⎟⎠ , i, j, k ∈ E (5)

For triangular elements E with surface area S and linear polynomial base spanned by the 3
vertices, the element mass matrix is easily derived by analytical integration. It is given in (6). The
mass matrix consists of 1

3 of the surface area S of the triangle E times a weighing matrix with
rows that sum to 1.0 and terms that indicate the weight of the contribution of the different depth
values h in element E to the corresponding node

ME = S

3

⎛
⎜⎝
0.50 0.25 0.25

0.25 0.50 0.25

0.25 0.25 0.50

⎞
⎟⎠ (6)

The total mass matrix M of the whole model area consists of the sum of all contributions of the
element mass matrices. The value of 1

3 of the surface area of the triangle E can be interpreted as
the share of the surface area of E that is attributed to each of its nodes. The finite volume analogue
of this FEM consists of centring the finite volumes on the nodes. The horizontal surface area of
the finite volume is the sum of 1

3 of the surface areas of each triangular element E that shares the
node. Graphical representation of this area is done by using the lower parts of the gravity lines of
the triangles (Figure 1(b)). If both the base functions and test functions sum to 1.0 everywhere, all
terms in the mass matrix of an element will sum to the surface area of that element. This follows
from the nature of the mass matrix (

∫
�i� j ). Base and test functions need not be the same for this

property. The sum of the terms in each row can always be seen as the share of the surface area
of E that is attributed to the node of that row. The terms in the matrix row can always be seen

Figure 1. (a) Six triangular finite elements; (b) finite volume around a vertex with linear base; and (c) finite
volume around an edge with quadratic base.
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1498 L. POSTMA AND J.-M. HERVOUET

as the weighing factors that are needed to obtain the weighed average finite volume depth of the
node of that row, that corresponds to the finite element depth of the nodes.

The mass matrix can be approximated using a diagonal matrix. The diagonal term of a row
then consists of the sum of all terms of that row in the exact mass matrix. This procedure is called
‘mass-lumping’ [3]. If the finite element model uses mass lumping, then there is only one weighing
factor located on the diagonal. It consists of the horizontal surface area around the node. In that
case the finite volume depth directly equals the finite element depth. Several authors [7, 8] assume
mass lumping for an analogue between finite elements and finite volumes. This assumption is
however no requirement. The weighing can also be performed a posteriori to derive finite volume
depths from the non-lumped finite element depths.

This means that for each nodal polynomial base, such a finite volume analogue of the mass
matrix exists. It may have remarkable properties for some sets of base and test functions. Examples
for triangular elements with 6 nodes and quadratic polynomial base and test functions the mass
matrix looks like (7). The uneven rows are the nodes at the vertices and the even rows are the
nodes of the midpoints of the edges.

ME = S

3

1

180

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

18 0 −3 −12 −3 0

0 80 0 56 −12 56

−3 0 18 0 −3 −12

−12 56 0 80 0 56

−3 −12 −3 0 18 0

0 56 −12 56 0 80

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

If mass-lumping is performed, the rows of the nodes at the vertices sum to zero and the rows
of the nodes at the midpoints of the edges sum to S/3. This means that then no mass is stored at
the vertices and all mass is stored around the edges. Figure 1(c) gives the graphical representation
of the finite volume analogue of this combination of elements and polynomial base. The nodes
and base functions of the vertices serve to make the polynomial base continuous throughout the
model area, but do not store mass if mass is lumped.

The finite element method interpolates the state variables over its elements using the base
functions. Linear base functions in Figure 1(b) and quadratic base functions in Figure 1(c). It
integrates the equation times the test functions as a weighing. Such integration resembles the
integration of the equation itself over the finite volume areas as conducted in the FVM. It yields
at least matrix terms with the same dimension. The FEM integration is however different in the
sense that the FEM integration is weighed. It furthermore covers the whole area of the triangles
that share a certain node. So in the FEM the area of integration for two adjacent nodes overlaps
because their base and test functions overlap. This is different from the FVM. The FEM integral
results in a horizontal surface area times a weighed average of the water depth h because all
nodal polynomial test and base functions sum to 1.0. The piecewise continuous integration of the
interpolated water levels h over the finite volume areas of Figures 1(b) and (c) gives however
different results because the weighing is lacking and the domain of integration is different. So
integration of the interpolated h will not lead to a finite volume analogue of the finite element
method [9].

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1495–1507
DOI: 10.1002/fld



COMPATIBILITY BETWEEN FINITE VOLUMES AND FINITE ELEMENTS 1499

2.2. The advection vector in the continuity equation

The divergence terms of (3) for all nodes k are given by Equation (8). The boundary term vanishes
per internal node k because all test functions � that correspond with internal nodes k vanish at
the boundary of the model domain. The boundary term does not vanish for open boundary nodes,
where it represents the flux across the open boundary of the model:∫

�
∇hu�k d�=

∮
�
hu · n�k d�−

∫
�
hu∇�k d�= −

∫
�
hu∇�k d� ∀k /∈ � (8)

It is common to split up the resulting integral of (8) in integrals per element to evaluate the
element contribution to the matrix equation. Per element E the boundary term does not vanish.
For each element, the boundary term can be seen as a flux from this element to the adjacent
elements, sharing the corresponding edge. For a nodal polynomial base, the test function for a
node is continuous on the edges thus the associated internal boundary term leaving one element
across an edge enters the adjacent element through the same edge and no mass is lost or gained at
the element interfaces. This is the reason why the internal boundary terms need not be evaluated
for the element contributions of elements not containing boundary nodes.

If an element E contains n nodes, then an element contribution consists of an integral over the
element E as in (8) for each of those n nodes in the system matrix. These n integrals on the n
rows for each node sum to zero per element E as shown below:

∑
k∈E

�k = 1.0 → ∑
k∈E

∫
E
hu∇�k dE =

∫
E
hu

∑
k∈E

∇�kdE = 0 (9)

Equation (9) holds for all sets of nodal polynomial test functions, irrespective of the selected
base functions for u. What (9) says is that the flow entering or leaving a single node in this element
E equals the sum of the flows leaving or entering the other nodes. So no mass is gained or lost
within element E .

In this way all element contributions to node k consist of the flow in that element towards or
from node k, depending on the sign. The combination of the mass matrix terms on row k and
these flux terms on row k means that the change in mass for node k equals the sum of the fluxes
towards node k from all elements E sharing node k. This also means that mass is conserved
per node.

It is interesting to take a closer look at ∇�k . For triangular elements with both linear base and
test functions defined at the vertices it is a vector with magnitude 1/hk where hk is the distance
of node k to the opposite edge in triangle E (Figure 2(a)). The vector is perpendicular to this
opposite edge in the plane of E . The surface area of the triangle SE is 0.5hklk where lk is the
length of the opposite edge. So ∇�k is a vector with magnitude 0.5lk/SE . This means that the
integral (10) for one node in E stands for the average value of hu over element E in the direction
normal to edge lk multiplied with half the length of this edge lk :

−
∫
E
hu∇�k dE =− lk

2

1

SE

∫
E
hu nlk dE (10)

If the test functions are nonlinear, their derivatives are not constant over E and the integral
in (10) becomes a weighed integral with the derivative of the test function as the weighing, but the
principle is the same. Figure 2(b) gives a graphical representation of this flux. The line 0.5lk is as
long as the projection of the parts of the gravity lines that connect the centre of gravity with the
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Figure 2. (a) Graphical representation of ∇�k ; and (b) hu through line 0.5 ∗ lk .

edges in the direction of lk . So the physical interpretation is now complete. The fluxes can be seen
as the element averaged value of hu through the lower parts of the gravity lines in the direction
perpendicular to the opposite edges.

This geometrical reasoning also shows in formula. Equation (11) results for the element contri-
bution of E . AE is the advection vector of E and transforms into (12), with ME as the mass matrix
(see Equations (5) and (6)) of E . With h̃ as MEh, expression (13) results for the flux contributions
of the 3 nodes of E to the continuity equation. li is the length of the edge opposite to node i and
nli is the unit vector normal to this edge:

−
∫
E
hu∇�k dE =− ∑

i, j∈E

∫
E
hiu j�i� j∇�k dE = AE ∀k ∈ E (11)

AE =− ∑
i, j∈E

hiu j∇�k

∫
E

�i� j dE =−

⎧⎪⎨
⎪⎩(ui , u j , uk)ME

⎛
⎜⎝
hi

h j

hk

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎛
⎜⎜⎝

∇�i

∇� j

∇�k

⎞
⎟⎟⎠ (12)

AE =−1

3
SE (h̃i ui + h̃ j u j + h̃kuk)

1

2SE

⎛
⎜⎜⎝
li nli

l j nl j

lknlk

⎞
⎟⎟⎠ =−hu

1

2

⎛
⎜⎜⎝
li nli

l j nl j

lknlk

⎞
⎟⎟⎠ (13)

Up to now nothing has been said about the time level of vectors hu in Equations (8)–(13). That
is not so important. If, e.g. � is the share of the implicit part and (1−�) is the share of the explicit
part, then the vectors hu mentioned in the equations stand for the weighed average of the implicit
and the explicit part, as they appear in the FEM equations.

2.3. Boundary conditions

Now it is time to deal with boundary nodes and elements that share boundary nodes. Closed
boundaries are simplest. We just add the element contributions (5) of all wet elements sharing
one or more closed boundary nodes to the total mass matrix M . This gives a change in volume
of these boundary nodes that is equal to 1

3 of the surface areas of all wet elements sharing this
node, times the weighed water depths of the nodes of these wet elements. The advection vector
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Figure 3. Open boundary nodes 1, 2, 3. Internal nodes 4, 5 and elements E1, E2 and E3.

of the wet triangles sharing this node gives the flows that are leaving and entering the node to
and from the other nodes of the wet triangles. The implicit assumption in this approach is that the
flow through the boundary edges is zero.

For open boundary conditions the situation is somewhat more complicated. Then the open
boundary part of (8) does not vanish. One can distinguish velocity boundaries, water level bound-
aries and mixed boundaries. It is possible to deal with a velocity open boundary node just as with
a closed boundary node, except for an open boundary flux towards this node (Figure 3(a)). That
flux consists of all terms of the boundary integral in (8) that are associated with the test function
of that node. The changes in water level for that node can then be computed as the result of the
fluxes across the open boundary part of that node and the fluxes within the triangles sharing the
node. For the water level open boundary the flux entering the open boundary node from the outside
generally is not computed and no mass conservation exists for the boundary node itself since it is
not part of the interior of the model. To overcome distinction in the kind of open boundaries, we
assume that all the open boundary nodes are not part of the model. We assume that the element
contributions of all elements sharing a boundary node, towards the first line of internal nodes,
exist. The open boundary condition then always acts as a flux boundary between the boundary
nodes and the first line of internal nodes. In Figure 3(b) this is illustrated for the boundary nodes
1, 2 and 3 and the internal nodes 4 and 5. The dashed lines give the boundary between the finite
volume analogue and the open boundary nodes. The arrows towards node 4 in element E1, from
node 2 in element E2 and towards node 5 in element E3 are computed according to (13) and give
together the open boundary fluxes in this section of the open boundary.

2.4. Degree of freedom to complete the finite volume analogue

We have derived a set of finite volumes with horizontal surface areas completely covering the
internal FEM model area with computational cells around the FEM nodes. We are either using
FEM lumped water levels or an equivalent weighing procedure on non-lumped FEM water levels
to obtain volumes and changes in volumes around the FEM nodes. We also have derived a set of
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Figure 4. Fluxes that become zero with the ‘nearest projection’ method.

flux terms to and from the nodes with the property that no flux is lost between the nodes. We can
set up the matrix equation in a finite volume way to link the change in water levels in nodes with
the fluxes to and from those nodes. We then exactly reproduce, term by term, the matrix equation
that is used by the finite element model to describe the same change in water levels for all its
internal nodes. In the mean time we have shown that this procedure is fully mass conserving per
node for each nodal polynomial base. It seems that we now can conclude that our finite volume
analogue of the finite element generated flow field and water levels is ready.

This conclusion is not fully true. Equation (13) gives for an element E the 3 fluxes to and from
the 3 nodes in that element. It is mass conserving because the 3 fluxes sum to zero. What we need
however are the fluxes between the nodes. We know what flux leaves node i , but we do not know
yet how much of it goes to j and how much to k. We cannot solve the fluxes between the nodes
from those to and from a certain node because for a triangular element there are 3 unknowns and
the three knowns are mutually dependent because they sum to zero. So one degree of freedom
is left.

There are several strategies to solve this problem. We could expand the analogue and see how
the finite element method solves its transport of substance equation. By careful selections of flows
and weighed average values of the concentrations in the nodes, we could probably reproduce that
set of equations also term by term by the finite volume analogue. That however has little use,
because then we could equally well just use the finite element model to solve our water quality
model equations. We could also use the geometric reasoning of Figure 2 and split the flows, e.g.
according to the length of the projections of the gravity lines.

We followed a different way. Equation (13) shows that for each element a weighed average
flow value is used that is projected in the directions perpendicular to the test functions. If we take
the direction of this weighed average flow, so the direction of (h̃i ui + h̃ j u j + h̃kuk), then it will
always be possible to let this direction point towards or from one of the nodes from or towards
the interior of triangle E (Node 1 in Figure 4(a), node 3 in Figure 4(c)). We then direct the flow
towards or from this node from or towards the two other nodes and we assume zero flow between
the two other nodes. Only if the direction coincides with the direction of one of the edges of E ,
the flow can run exactly between the two nodes spanning the edge and the two other flows are zero
(Figure 4(b)). You can call this method a ‘nearest projection’ method, because the flow along the
edge that is closest to perpendicularity with the direction of the flow becomes zero. You can also

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1495–1507
DOI: 10.1002/fld



COMPATIBILITY BETWEEN FINITE VOLUMES AND FINITE ELEMENTS 1503

call it a ‘zero rotation’ method because the rotation of the flow within element E , as a consequence
of the attribution to the 3 links between the nodes, becomes zero this way.

2.5. The analogue in three dimensions

The analogue in three dimensions depends on the treatment of the water free surface. If there are
layers with fixed water level during a time step, then ∇u = 0 for those layers and for incompressible
fluid. The ‘change in mass part’ of (3) then is zero because h does not change. The mass matrix
itself however is not zero and still shows the amount of mass that is attributed to each of the nodes.
Everything that is mentioned on the advection vector still remains the same, the only difference
is that all terms associated with one node sum to zero, because its volume does not change. For
those layers where also a change in water depth is computed, the same reasoning as for the depth
integrated case holds. It is clear from the concentration of mass in the nodes that a layered finite
element model with n + 1 nodal layers (one at the bottom and one at the water surface) becomes
a finite volume model that also has n + 1 layers. In such models, like in Telemac-3D, the vertical
velocities are computed to readjust the layers to their fixed level or to their proportional sigma
level. The same procedure can then be used for the analogue to derive the vertical fluxes, as is
done for the coupling with Telemac-3D.

If the 3D FEM uses completely 3D elements and if the model thus computes the vertical
velocities with the finite element method rather than as a consequence of the readjustment of
layers, the situation changes somewhat. The mass matrix then shows again what share of the 3D
volumes of each element is attributed to each of its nodes. The advection vector again shows the
fluxes to and from the nodes. For nodal polynomial bases the advection terms per element still
sum to zero. All according to the given principle and formulas. This however leaves a number of
degrees of freedom for the finite volume analogue that is larger now. There are more links between
nodes than nodes in the element. For a standing prism with 6 nodes, e.g. there are 6 flows in the
advection matrix one towards or from each of the nodes. All 6 together sum to zero. But there
are 15 possible finite volume links between the nodes, so there are 10 degrees of freedom. If we
assume vertical flows along the edges only, 6 degrees of freedom vanish (are zero). If we also
assume that the 3 vertical fluxes in one element are equal, 2 more vanish. If we furthermore use
the ‘nearest projection method’ for both the top triangle and the bottom triangle, then all degrees
of freedom are resolved.

The guiding principle again is that the finite volume analogue derived this way produces a
matrix equation for continuity that is an exact match of the corresponding finite element matrix
equation for continuity, term-by-term.

3. TEST CASES

The test-case was taken in the Telemac-2D validation document [4]. The initial purpose was to
study the impact of a channel flow around obstacles and to demonstrate that the software can
simulate flows with unsteady eddies even with steady-state boundary conditions. As the finite
element mesh used has the same symmetry as the real domain, von Karman eddies will appear
only if there is a breaking of symmetry in the computation. This is achieved either by the linear
systems solvers, or by truncation errors. A 20 m wide and 28.5 m long prismatic channel with
trapezoidal cross-section contains bridge-like obstacles in one cross-section made of two abutments
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Figure 5. The finite element computational grid of the channel flown from left to right.

Figure 6. Concentration pattern of the tracer after 400 times steps of 0.1 s with the FEM.

and two circular 4 m diameter piles. There are 4304 triangular elements and 2280 nodes in the
mesh (Figure 5). The inflowing open boundary is at the left side, the outflowing open boundary
is at the right side. Top and bottom boundaries and also the boundaries along the two pillars are
closed.

The elevation of the free surface is imposed at the exit at the value 0. The velocity profile
at the entrance is assumed constant and the value of the velocity is recomputed at every time
step to ensure that the total discharge is Q = 62 m3/s, whatever the free surface elevation. On the
lateral boundaries and pillars, a free slip condition is assumed. The flow resulting from steady-state
boundary conditions is studied. The bed is flat in the middle of the channel, at an elevation of −4m,
and then rises up to −1m when it reaches lateral boundaries. The Strickler friction law is chosen,
with a coefficient 40, which is equivalent to a Manning 1

40 . Turbulence and dispersion are simply
represented by a constant kinematic viscosity of 0.005m2/s. With such a value von Karman eddies
do appear. With higher values, e.g. a viscosity of 0.1 m2/s, symmetry is not broken; 80 s of real
time are simulated with time steps of 0.1 s. To avoid spurious oscillations due to the collocation
of velocity and depth, a quasi-bubble element has been chosen for velocity. The depth is linear.
The advection in the momentum equation is treated with the method of characteristics. For the
purpose of this paper a tracer was added in the computation and enters the domain through a small
section of the upstream boundary. The transport of the tracer in the FEM model is computed with
a Lagrangian solution scheme [10] that minimizes artificial spreading but is not conserving mass.
The result of this tracer plume after 40 s is shown in Figure 6.
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Figure 7. The finite volume computational grid of the channel flown from left to right.

Figure 8. Concentration pattern of the same tracer with the finite volume solver.

The procedure to derive a finite volume analogue of the finite element flow field as described in
this contribution is used. The resulting setting of finite volumes is given in Figure 7. The Delft3D
finite volume water quality model is used to compute the same tracer release using this finite
element model generated flow field. The water quality model now is free to apply its own solvers
on the dataset. To demonstrate this, firstly the most simple solver is used: first-order upwind
in space, explicit in time. Because of the intrinsic numerical diffusion of the solver, no further
diffusion is added. The result is given in Figure 8. The artifact at the inflowing and at the outflowing
open boundary is a graphical artifact due to the fact that the open boundary nodes themselves are
not part of the interior of the finite volume model.

The results show the same qualitative pattern of tracer transport through the von Karman eddies.
The finite volume model conserves mass up to machine accuracy. This is the main reason for the
difference in concentration levels more remote from the entrance of the tracer. If the finite volume
model uses its more accurate flux corrected transport scheme [11], a diffusion of about 0.0025m2/s
has to be added to obtain comparable results. The principle of the flux corrected transport scheme
is in some sense comparable with the SUPG scheme in finite elements: some additional diffusion
is added to avoid the wiggles of a higher-order transport solver [12].

Initially the standard output files as produced by the separate Tememac-2D model run have been
used to obtain the velocities and water levels in the nodes needed for the computation of flows and
volumes. At the moment of the revision of this manuscript the coupling procedure as described
has also been implemented as subroutine within Telemac-2D and Telemac-3D to produce the finite
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volume files directly. This interface also allows for aggregation of time steps to reduce file size. All
these interfaces provide sets of volumes and flows between the volumes that are mass conserving
up to machine accuracy.

4. CONCLUSIONS AND DISCUSSION

Thanks to a choice of specific finite volumes centred on finite element nodes, a compatibility has
been found between finite elements and finite volumes as regards mass conservation and fluxes,
so that a finite element hydrodynamics may be used for advection–diffusion type equations solved
in finite volumes. The technique developed in two dimensions for shallow water equations can be
extended to three-dimensional Navier–Stokes equations with a free surface. This allows a bridge
between different software systems working on non structured grids.

The finite volume representation for triangles in two dimensions leaves one degree of freedom.
This degree of freedom is used in a way that artificial spreading perpendicular to the direction of
the velocity is minimized. The finite volume tracer concentration pattern derived with this flow
field even using very simple numerical schemes is similar to the concentration pattern generated
with the method of characteristics in the finite element model.

In the basic Telemac-2D algorithm, the continuity equation and the momentum are solved simul-
taneously. This ensures a strictly coherent depth and velocity as regards continuity. This coherency
is converted to a mass conserving finite volume database up to machine accuracy. The method
leans on the way the finite element model represents the continuity equation. Another Telemac-2D
option exists, based on the wave equation and consisting of eliminating the velocity from the
continuity equation [13]. This means that the continuity equation (3) cannot be distinguished in
that form any more. This option will also ensure mass conservation, but as the velocity is computed
in a further step, it is not compatible with the depth in the sense of Equation (3). This necessitates
a different approach to derive a finite volume analogue as will be the case for any other different
approach to the continuity equation in finite elements.
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